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Abstract

Idea Management 
System Application Type 
Impact on Idea Quantity 

http://dx.doi.org/10.5755/j01.eis.1.14.26381

Idea management system application considers idea quantity as the key to idea management success. The 
aim of this paper is to examine how different idea management system application types impact idea quantity. 
The authors conducted empirical research by conducting a survey based on adaptive structuration theory 
framework. In the research paper, an analysis of 447 responses was included.
The study shows how to separate idea management system application types impact by idea quantity. The 
target group consisting of commercially available web-based idea management system applied enterprises 
bias present in the survey research may limit the generalisability of the results. The study contributes to the 
discussion about the idea management system application type impact on the idea management results by 
showing that different idea management system application types lead to different idea management results.

KEYWORDS: Idea management systems, Idea quantity, Survey research, Web-based idea management, 
Innovation.

Introduction

Elina Mikelsone
BA School of Business and Finance

Innovation management and application of information technologies in organisations has become 
increasingly more relevant over the last few decades. Web-based idea management systems (IMS) 
fall in line with the current developments (e.g. growing importance of ICT, the spread of open in-
novation and co-innovation, etc.) in all previously mentioned considerations, IMS is a manageable 
systematic tool to generate and evaluate ideas. The use of web-based IMS has become a part of the 
organizational culture in various enterprises and Web-based IMS are used by many well-known or-
ganizations such as Boeing, P&G, Volkswagen, Xerox, Pentax, Heineken, Panasonic, Sony, Fujitsu, 
Electrolux, Volvo, etc. The authors expect that throughout the following years the role of web-based 
IMS will grow as even more organizations will start to apply them. Many good examples show 
positive effects on organizations performance that use web-based IMS. For example, BT Group is 
using its IMS Webstorm which helped the company acquiring 10 000 new ideas in the seven years 
between 2005 and 2012. Realization of these ideas has helped the company to increase its revenue 
by 100 million pounds and improve customer loyalty (Bright Idea, 2010). Another example is Bruce 
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Power, the only privately owned nuclear power station in Canada. In two years since it started using 
IMS Idealink Open, it has acquired more than 2700 new ideas and more than 10 000 participants 
have participated in their IMS process (generation, development). The use of IMS can lead to both 
a decrease in costs and an increase in revenue (Brain Bank, 2014). Application cases show that 
this tool gives the possibility to connect internal and external idea creators and evaluators in the 
idea management (IM) process and these systems could connect different entrepreneurship areas, 
for example, intrapreneurship and innovation management, opportunity identification and creation.  
But there is a lack of research on the web-based IMS application types and their respective results. 
Authors of this paper aim to explore web-based IMS application type impact on its application 
results. To fill the gap, authors apply theoretical and empirical approach with the main aim to ex-
amine how different IMS application types impact IMS results.

Applegate (1986) is the first researcher mentioning IM and to begin IM and IMS research. Since 
then there have been several academic perspectives on how to research IM and IMS. A majority 
of researches focuses on systematic aspects of IM and IMS (e.g. Bailey and Horvitz, 2010; Barczak 
et al., 2009; Bjork and Magnusson, 2009; Coughlan and Jahanson, 2008; Flynn et al., 2003; Gal-
brait, 1982; Gish, 2011; Green et al., 1983; Korde and Paulus, 2016; Vandenbosch et al., 2006)  and 
structural (e.g. Bassiti and Ajhoun, 2013; Bergendah and Magnusson, 2014; Divakaran, 2016; Luo 
and Tobia, 2015; Narvaez and Gardoni, 2015; Poveda et al., 2012;  Summa, 2004; Voigt and Brem, 
2006; Westerski and Iglesias, 2011; Wooten and Ulrich, 2015). Structural literature sources focus 
on design and the process, but systematic literature sources focus on social capital, creativity, 
cognition, etc. (Rose and Jensen, 2012).

Authors have revealed in the previous researches that there are multiple types of research availa-
ble with a structural perspective that provide a theoretical base for IMS concept exploration. Litera-
ture about IMS overviews mostly focus on existing IMS and their application and potential improve-
ments (e.g. Summa, 2004; Bakker et al., 2006; Coughlan et al., 2008; Bothos et al., 2008; Bjork et al., 
2009; Barczak et al., 2009; Beretta, 2015; Tung et al., 2009; Bailey et al., 2010; Hrastinski et al., 2010; 
Holzblatt et al.,2011), but some researches also aim to research development of new IMS (e.g. 
Flynn et al., 2003; Vandenbosch et al., 2006; Bothos, et al, 2009; Iversen, et al., 2009; Bansemir et 
al., 2009; Bettoni et al., 2010; Xie et al.,2010; Bothos et al., 2012; Lowe and Heller, 2014). This paper 
aims to be part of the first type of papers which explores existing systems focusing on commer-
cially available systems. Most researches that explore existing IMS research focus on one or a few 
IMS but this research is based on a survey across multiple different IMS users.

IMS has not been given sufficient scientific attention and it should be researched how different IMS 
types impact its application results (van den Ende et al., 2015). This research is aiming at providing a 
contribution to fill this gap. First, the paper will help researchers and IMS users to understand the ba-
sic IMS application types and their potential results. Second, the exploration of different IMS types and 
their results could motivate entrepreneurs to re-evaluate their current approach to IM. Third, develop-
ers and users of web-based IMS see the potential of these systems but positive outcomes often do not 
occur and that is one of the reasons why organizations do not use them in the long term (DeSanctis 
and Poole, 1994). Due to these reasons, it is important to explore web-based IMS application types 
and their results, to explain what results companies could expect based on different application types. 

In this paper, IM is defined as a systematic, manageable process of idea generation, evaluation, 
and repeated idea generation and evaluation. The IMS is defined as a tool, tool kit or complex 
system which provides systematic, manageable process in IM (Mikelsone and Liela, 2015). The 
authors use 2 IMS classifications: based on involved idea sources (internal, external, mixed) and 
based on the application focus (active, passive). The research aims to answer the research ques-
tion: How different IMS application types impact idea quantity? To answer these questions 4 
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hypotheses will be tested that are based on the 3 types of IMS and 4 dimensions of the results:
 _ (H1) Active IMS provide higher idea quantity than passive.
 _ (H2) External IMS provide higher idea quantity than internal.
 _ (H3) Mixed IMS provide higher idea quantity than internal.
 _ (H4) Mixed IMS provide higher idea quantity than external.

Figure 1 summarizes the motivation for this paper.

Aim

Gap to fill 
(academic 
topicality)

Overall topicality 
(trends and 

practical topicality)

Use theoretical and empirical approach to examine how different 
IMS application types impact IMS application idea quantity.

Main literature gap – no research on how IMS application types 
impact idea quantity.

IT application and innovation management in organizations is 
more relevant now than ever before. Trends to match – (1) in 
the age of knowledge tools that provide means for acquiring, 
evaluation and development of knowledge and ideas are 
extremely important; (2) the growing role of ICT increases the 
importance of web-based tools that support the innovation 
process; (3) web-based IMS is becoming more important in the 
context of open innovation and co-innovation, giving them access 
to both internal and external sources of ideas and knowledge.

Figure 1
Research development 
motivation

Source: created by author’s

This paper fulfils an identified need to clarify IMS types and their impact on idea quantity. This pa-
per creates academical contribution: it researches different classifications of IMS and their impact 
on idea quantity. Practical contribution - web-based IMS application types and their idea quantity 
could help to evaluate the potential application of IMS in different scenarios.

The rest of the paper is structured as follows. The second section introduces the theoretical background. 
The third section continues by presenting the research methodology. The fourth section provides the 
answers to the research questions through conducted research. This structure can be seen in Figure 2.
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Figure 2
Paper Structure

Secon 1 Secon 2 Secon 3 Secon 4 Secon 5

Theoretical 
background

Idea management system basic assumptions
In this paper, the definition of the IM is based on the following assumptions that that IM is: (1) sys-
tematic process; (2) manageable process; (3) main parts of IM are idea generation, evaluation, 
and repeated idea generation and evaluation (if it is needed). Based on these assumptions IMS is 
a tool, tool kit or complex system which provides systematic, manageable process in IM (Mikel-
sone and Liela, 2015). Table 1 provides a detailed description of IMS, characterising all previously 
mentioned elements with its sub-elements.
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Table 1
IMS Main 
Characteristics 

IMS - tool, tool kit or complex system which provides systematic, manageable process of:

Idea generation (preparation, 
capture/gathering of ideas, 
retention, enhancement)

Idea evaluation 
(screening, 
selection, retention)

Continuation of IM (concept development, 
distribution of ideas, support during implementation 
with repeated IM and rewarding, retention)

e.g. Korde and Paulus, 2016; Wooten 
and Ulrich, 2015; Summa, 2004

e.g. Westerski, 2013; 
Summa, 2004 e.g.Summa, 2004

Source: based on Mikelsone, Volkova and Liela (2019)

There are 3 IM types: external, internal and mixed IM. External IM means external idea generation 
and evaluation (main IM sources – experts, partners, customers and other stakeholders outside 
the organization) (e.g. Bothos et al., 2008; Tung et al., 2009; Westerski et al, 2011; Bothos et al., 
2012). Internal IM is internal idea generation and evaluation in an organization (main IM source 
employees) (e.g. Iversen et al., 2009; Fatur et al., 2009; Bansemir et al., 2009; Glassmann, 2009; 
Klein and Lechner, 2010; Bettoni et al., 2010; Selart and Johansen, 2011; Shani et al., 2011; Moss 
et al., 2011; Deichmann, 2012;  Aagaard, 2012, 2013; Poveda et al., 2012; Bassiti and Ajhoun, 
2013, Wood, 2003). Mixed IM - idea generation and evaluation involving internal and external 
sources (e.g. Fritz, 2002; Nilsson et al., 2002; Voigt et al., 2006; Brem et al., 2007; Enkel et al., 
2009; Brem et al., 2009; Sandstrom and Bjork, 2010; Baez and Convertino, 2012).

Idea management system application types
For this research the authors have applied two categories for classifying IMS application: (1) 
based on the involved IM source; (2) based on the IM application focus. 

There are other possible categories for IMS classification: based on the provided process functions (lim-
ited, full, extra) and based on the IMS price type (monthly payment, yearly payments). The last two types 
of classifications will not be investigated further as they focus on systems, not on their application type.

Authors based on the ideas divide all IMS application cases as follows: 
 _ internal IMS by involvement internal idea creators and evaluators; 
 _ external IMS by involvement external idea creators and evaluators;
 _ mixed IMS by involvement internal and external idea creators and evaluators.

Based on the application focus all systems could be divided as “active” and “passive’’, therefore, 
there are passive and active IMS. Passive IMS collect all ideas in an unfocused manner, but active 
IMS provide functions to collect ideas in a focused manner and most cases includes idea evalua-
tion possibilities. IMS type descriptions are provided in Table 2.

Table 2
IMS Application 
Types 

Classifications

Classification criteria: based on the application focus 

Passive IMS Active IMS 

Functions Type of focus Functions Type of focus

Focus on idea 
generation

Unfocused 
process

Focus on all IM dimensions Focused process 

Classification criteria: based on the involved IM source 

Description
Main IM 
source

Description
Main IM 
source

Description
Main IM 
source

IMS that allows 
involving only 

internal IM sources
Employees

IMS that allows 
involving only 

external IM sources

Crowds, 
experts, 

clients, etc.

IMS that allows 
involving internal and 
external IM sources

Employees; 
clients, experts, 

crowds, etc.

Source: based on Mikelsone, Volkova and Liela (2019)
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Idea Management System Application Results
Quality and quantity of ideas are most often used as measurements for IM and IMS application, and 
as a result, should be considered as the main elements of the web-based IMS application outputs. 
Denis and Garfield (2003) have revealed that decision support system processes may encourage 
more participation that also provides a challenge to research this element in the IMS context.  Woo-
ten and Ulrich (2015) had researched feedback importance in the idea management process, based 
on the conclusion that managers face a decision about if and how to provide in-process feedback 
to the idea generators about the quality of submissions. Their research revealed that directed feed-
back benefits the average quality of entries submitted. The stimulus that impacts web-based IMS 
application and its results can also be researched. The authors have concluded that there is no 
common view on IMS output elements, except idea quality and quantity, and involvement. It would 
be advisable to create IMS effectiveness evaluation tool that would include the most important 
output elements. In this research, authors will apply the most frequent researched IMS output 
variables - idea quantity, idea quality and involvement. Idea quality could be defined as the average 
quality of generated ideas (idea creativity) (Selart & Johansen, 2011; Deichmann, 2012; Bjork & 
Magnusson, 2009). Idea quantity could be defined as a number of ideas generated (MacCrimmon 
& Wagner, 1994; Korde & Paulus, 2016; Girotra & Ulrich, 2010; Deichmann, 2012). There is an ad-
ditional variable chosen to research results – involvement or number of involved people (Dennis & 
Garfield, 2003; Deichmann, 2012). In this research, authors focus on idea quantity.

Methodology Research instrument for measuring web-based IMS application results
A questionnaire was created for web-based IMS applied companies. The survey was conducted 
in the summer/autumn of 2018. Methods for obtaining primary data are described in Table 3.

This survey results allowed to compile data on IMS in 8 blocks, according to Adaptive Structura-
tion Theory: (1) type of IMS; (2) tasks; (3) organization system; (4) adaptation and type of use; (5) 
IMS results; (6) organisational effectiveness; (7) new structures; (8) problems with the use of IMS. 
Table 4 highlights the survey block - IMS results.

A total of 186 elements are summarized in 8 question blocks.  In this paper, the applied survey block 
is IMS results. The questionnaire was created and distributed in English, as the dominant language of 
the IMS and its use in English. All criteria were based on literature analysis and updated scales were 
based on the results of the case studies as used to describe the results of the application of IMS.

Data collection
The survey was conducted on the survey platform 'The QuestBack' (https://www.unipark.com/) 
created by UNIPARK. This platform was chosen because it is: (1) focused on academic surveys; 
(2) widely recommended by world-class researchers; (3) provides data security required by IMS 
representatives - BSI-certified data centre in accordance with ISO 27001; (4) complies with the 
requirements of the EU General Data Protection Regulation.

To test the questionnaire, it was sent to 9 companies that conducted a survey and were able 
to comment on any question. The test was done in 3 rounds, the questionnaire was sent to 3 
companies using the IMS when comments were received and based on the feedback the ques-
tionnaire was improved. In the third round, comments on the structure or clarity of the questions 
were no longer provided. Based on the tests, the time of completing the questionnaire was de-
termined (20-30 minutes). After the test, the survey results were deleted.

It should be noted that to reach the target audience more accurately, the authors asked IMS devel-
opers to distribute the survey to their clients. It was stipulated that the survey should only be sent 
to companies using the system in question to the person in charge of the IMS (mostly think-tanks, 
innovation managers or business managers). In the authors' private communication with 107 IMS 
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Table 3
Primary data selection un 
analysis description

Aim Data selection Data analysis Period Steps

IMS 
application 
types 
impact on 
the results 

Survey of the 
enterprises 
that applies 
web-based 
IMS  (n>400)

Statistical analysis 
(frequency 
distribution, 
standard deviation, 
t-statistics, degrees 
of freedom (df), 
critical values (tc) 
and p-values, etc.)

3r 
quarter
of 2018

1 Survey development based on literature analysis 
and developed classifications.

2 Round survey test (data not included in the analysis). 

3 Survey distribution to 107 web-based IMS develop-
ers, that they could distribute to their clients.

4 400 valid surveys. 

5 Standard deviations to evaluate the data consisten-
cy for the analysis.

6 Data analysis through selected methods

Source: created by author’s

Question Scale Based on

Idea quantity -  What is the average number of ideas created per task? None

Based on 
the literature 
studies and 
empirical 
case studies 
conducted by 
the authors

Using internal IMS To 10

Using external IMS 11 - 100

Using mixed IMS 101 - 1000

Using active IMS 1001 - 5000

Using passive IMS 5001 - 10 000  
More than 10 001

Table 4
Questionnaire 
Section – IMS 
Results

Source: created by author’s

developers and the information published by the IMS concerned, it was concluded that the IMS 
employs around 70, 000 - 100,000 companies (derived from the average number of IMS clients).

Invitation for their system applicants to involve sent to 108 idea management system crea-
tors  – Crowdicity, Viim, IdeasMine, Idea Drop, Ideanote, Receptive, CrowdWorx Innovation Engine, 
Ideawake, Sideways 6, OrganisedFeedback, Exago SMART, Ideation360, ProdPad, Vetter Online 
Suggestion Box, IdeaLab, GroupMap, Ideaflip, IDEAFOX, iMindQ, Innovation Cloud, innovation5g.
com, MindView 7, WE THINQ, eXo Platform, IdeaScale, HYPE Innovation, MindManager, Milanote, 
Innovation Platform, Kindling, Coggle, DataStation Innovation Cloud, SprintGround, Be-novative, 
BrainStorm, Idearium, Stormboard, MangoApps, Nova-Innovate Innovation Management Soft-
ware, Wizeline, Comapping, FeatureMap, Glint Innovation, Ideacomb, Mindomo, SoapBox, Sprint, 
Wave, Work by InnoCentive, Braincatena, BrightSpars, Bubbl.us, CogniStreamer, De Idee Manage-
ment Tool, e-Zassi, easycrit, eVSM, Firefly, GainX, germ.io, Headstarter, HiFISH, Hives.co, id-Force, 
ID8 Enterprise, Ideabox, IdeaBridge, Ideafactory, Ideakeep, IdeaLinker Accelerate, Ideasbank, IDhall 
SC, Includer, INDONIS, Inno360, InnoEngines, innosabi, Innovation Agora, Innovation Central, In-
novationCast, InnovationStation, Innovbook, ITONICS Ideation, MindApp, Nosco, NovaMind, Onyx 
Cloud Ideas, Orchidea, PIT, Postwaves, SocialJsIdeas, Solverboard, Sophia, TalkFreely, Verve, Voco-
li, Yambla, Accept360, Idea Glow, IdeaSpotlight, Idea Management Software by Planbox, Brightidea, 
IDEALYST, Online Suggestion Box, Flagpole, Spigit Idea Management Software, Academy of Ideas.

Data analysis
To validate data for the further analysis the pre-analysis was conducted by using the following methods: 

 _ Point estimation and interval estimation – ‘’the process of providing a numerical value for a pop-
ulation parameter based on information collected from a sample. If a single figure is calculated 
for the unknown parameter, the process is called point estimation. The process of providing a 
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numerical value for a population parameter based on information collected from a sample. If an 
interval is calculated which is likely to contain the parameter, then the procedure is called interval 
estimation” (Everitt & Skrondal, 2010);

 _ Frequency distribution – “the division of a sample of observations into a number of classes, 
together with the number of observations in each class. Acts as a useful summary of the main 
features of the data such as location, shape, and spread” (Everitt & Skrondal, 2010); 

 _ Mean of the group - to get the average value of the group;
 _ Standard deviation – to measure the spread of a set of observations;
 _ Modal and medial class (interval) – to observe the most frequent and ‘’the value in a set of ranked 
observations that divides the data into two parts of equal size” (Everitt & Skrondal, 2010);

 _ Coefficient of variation - to measure “the spread for a set of data defined” (Everitt & Skrondal, 2010);
 _ Confidence interval – to range the values, calculated from the sample observations, that is 
believed, with a particular probability, to contain the true parameter value (of the population); 

 _ Sampling error – to observe “the difference between the sample result and the population 
characteristic being estimated” (Everitt & Skrondal, 2010).

 _ To test the hypothesis the following data analysis methods were applied:
 _ Significance tests for a population mean number for the result variable.
 _ The t-test was used to measure statistically significant variations between IMS types. It was 
applied to test the hypothesis.

 _ Calculating p-values for the given test statistics and the degrees of freedom.

Findings Basic data characteristics – idea quantity
Respondents frequency distribution based on survey data is shown in Figure 3.

The further detailed analysis consists of the arithmetic mean of the group, standard deviation, 
modal and medial class (group), coefficient of variation.
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The standard deviation of grouped data is calculated as follows:

for the unknown parameter, the process is called point estimation. The process of providing a 
numerical value for a population parameter based on information collected from a sample. If an 
interval is calculated which is likely to contain the parameter, then the procedure is called interval 
estimation” (Everitt & Skrondal, 2010); 

 Frequency distribution – “the division of a sample of observations into a number of classes, together 
with the number of observations in each class. Acts as a useful summary of the main features of the 
data such as location, shape, and spread” (Everitt & Skrondal, 2010);  

 Mean of the group - to get the average value of the group; 
 Standard deviation – to measure the spread of a set of observations; 
 Modal and medial class (interval) – to observe the most frequent and ‘’the value in a set of ranked 

observations that divides the data into two parts of equal size” (Everitt & Skrondal, 2010);  
 Coefficient of variation - to measure “the spread for a set of data defined” (Everitt & Skrondal, 

2010); 
 Confidence interval – to range the values, calculated from the sample observations, that is believed, 

with a particular probability, to contain the true parameter value (of the population);  
 Sampling error – to observe “the difference between the sample result and the population 

characteristic being estimated” (Everitt & Skrondal, 2010). 
To test the hypothesis the following data analysis methods were applied: 
 Significance tests for a population mean number for the result variable. 
 The t-test was used to measure statistically significant variations between IMS types. It was applied 

to test the hypothesis. 
 Calculating p-values for the given test statistics and the degrees of freedom.  

 
4. Findings 
4.1.Basic data characteristics – idea quantity 
Respondents frequency distribution based on survey data is shown in Figure 3. 
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, mi - ith class (group) midpoint.

The median (Me) of grouped data is calculated as follows:
The median (𝑀𝑀𝑀𝑀) of grouped data is calculated as follows: 
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where 𝑥𝑥��,� - lower class boundary of the interval containing the median, 
          𝑐𝑐𝑐𝑐���� – cumulative frequency of the interval before the median interval, 
          𝑐𝑐�� - frequency of the median interval, 
           ∆��- the median interval width. 
Medial interval is interval for which accumulated frequencies first time is equal or larger than half of the 
sample size.  
Coefficient of variation (CV) is calculated as follows: 

𝐶𝐶𝐶𝐶 =  ��̅  *100%                                                                           (4) 
Point estimates were aggregated and are provided in Table 5. 
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As shown in Table 5, the medians for all IMS types are less than the means of the generated ideas. 
These differences indicate some asymmetry in the distribution of respondents - more often a smaller number 
of ideas are generated, but less often - a large number of ideas. There is a particularly large difference 
between these indicators for passive IMS as well as for internal IMS - as frequency distributions are skewed 
mean values does not give a good idea of a typical value that can be expected in case of using these types 
of IMS. The calculated coefficients of variation also indicate similar - passive and internal IMS has more 
variation, relative to its arithmetic means than other IMS application types.   
Further described is the interval estimation for the population mean. The confidence interval for the 
population means µ is calculated as follows: 
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           𝛼𝛼  - level of significance and 100*(1- 𝛼𝛼)%  - confidence interval.                     
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(UCL) that are likely to contain the true parameter value (of the population). The value 95% refers to the 
probability that the interval will capture the parameter being estimated (Tan & Tan, 2010).  95% confidence 
interval estimates are aggregated in Table 6. 
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Pasive IMS 306 1141,1 96,7 2313,7 203%
Internal IMS 411 1284,3 396,1 2299,2 179%
External IMS 371 4377,1 3875,5 3543,5 81%
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Mixed IMS 4420,1 205,4 4016,0 4824,2

(3)

where: 
 
xMe,l  - lower class boundary of the interval containing the median, cfMe-1 – cumulative frequency 

of the interval before the median interval, fMe - frequency of the median interval, ΔMe  - the median 
interval width.

Medial interval is interval for which accumulated frequencies first time is equal or larger than half 
of the sample size. 

Coefficient of variation (CV) is calculated as follows:

The median (𝑀𝑀𝑀𝑀) of grouped data is calculated as follows: 

𝑀𝑀𝑀𝑀 = 𝑥𝑥��,� +  �
∑�
�  �������� ∗ ∆��

���
                                                                            (3) 

where 𝑥𝑥��,� - lower class boundary of the interval containing the median, 
          𝑐𝑐𝑐𝑐���� – cumulative frequency of the interval before the median interval, 
          𝑐𝑐�� - frequency of the median interval, 
           ∆��- the median interval width. 
Medial interval is interval for which accumulated frequencies first time is equal or larger than half of the 
sample size.  
Coefficient of variation (CV) is calculated as follows: 

𝐶𝐶𝐶𝐶 =  ��̅  *100%                                                                           (4) 
Point estimates were aggregated and are provided in Table 5. 

 Table 5  
Point estimates for idea quantity 

   
                                    Source: created by author’s 

As shown in Table 5, the medians for all IMS types are less than the means of the generated ideas. 
These differences indicate some asymmetry in the distribution of respondents - more often a smaller number 
of ideas are generated, but less often - a large number of ideas. There is a particularly large difference 
between these indicators for passive IMS as well as for internal IMS - as frequency distributions are skewed 
mean values does not give a good idea of a typical value that can be expected in case of using these types 
of IMS. The calculated coefficients of variation also indicate similar - passive and internal IMS has more 
variation, relative to its arithmetic means than other IMS application types.   
Further described is the interval estimation for the population mean. The confidence interval for the 
population means µ is calculated as follows: 

 �̅�𝑥 ± 𝑀𝑀𝑀𝑀                                                                            (5) 
where 𝑀𝑀𝑀𝑀 - margin error, 

 𝑀𝑀𝑀𝑀 =  𝑡𝑡���,�/� ∗ �
√�                                                                (6) 

  𝑡𝑡���,�/�- value of t distribution for the selected confidence level and sample size, 
           𝛼𝛼  - level of significance and 100*(1- 𝛼𝛼)%  - confidence interval.                     
The upper confidence limit (UCL) is calculated as follows: 

UCL = �̅�𝑥 + 𝑀𝑀𝑀𝑀                                                                        (7) 
The lower confidence limit (LCL) is calculated as follows: 

LCL = �̅�𝑥 − 𝑀𝑀𝑀𝑀                                                                         (8) 
Confidence intervals (CI) provide the lower confidence limit (LCL) and the upper confidence limit 

(UCL) that are likely to contain the true parameter value (of the population). The value 95% refers to the 
probability that the interval will capture the parameter being estimated (Tan & Tan, 2010).  95% confidence 
interval estimates are aggregated in Table 6. 

Table 6 
Mean values, margin errors and 95% confidence interval estimates for idea quantity 

   

IMS type n  Mean Median s CV
Active IMS 439 4138,6 3392,1 3500,6 85%
Pasive IMS 306 1141,1 96,7 2313,7 203%
Internal IMS 411 1284,3 396,1 2299,2 179%
External IMS 371 4377,1 3875,5 3543,5 81%
Mixed IMS 337 4420,1 3842,6 3771,4 85%

IMS type  Mean ME LCL UCL
Active IMS 4138,6 167,1 3810,2 4466,9
Pasive IMS 1141,1 132,3 880,9 1401,4
Internal IMS 1284,3 113,4 1061,4 1507,3
External IMS 4377,1 184,0 4015,4 4738,9
Mixed IMS 4420,1 205,4 4016,0 4824,2

(4)

Point estimates were aggregated and are provided in Table 5.

Table 5
Point estimates for idea 
quantity 

IMS type n Mean Median S CV

Active IMS 439 4138,6 3392,1 3500,6 85%

Pasive IMS 306 1141,1 96,7 2313,7 203%

Internal IMS 411 1284,3 396,1 2299,2 179%

External IMS 371 4377,1 3875,5 3543,5 81%

Mixed IMS 337 4420,1 3842,6 3771,4 85%

Source: Authors’ constructions

As shown in Table 5, the medians for all IMS types are less than the means of the generated ide-
as. These differences indicate some asymmetry in the distribution of respondents - more often a 
smaller number of ideas are generated, but less often - a large number of ideas. There is a par-
ticularly large difference between these indicators for passive IMS as well as for internal IMS - as 
frequency distributions are skewed mean values does not give a good idea of a typical value that 
can be expected in case of using these types of IMS. The calculated coefficients of variation also 
indicate similar - passive and internal IMS has more variation, relative to its arithmetic means 
than other IMS application types.

Further described is the interval estimation for the population mean. The confidence interval for 
the population means µ is calculated as follows:

The median (𝑀𝑀𝑀𝑀) of grouped data is calculated as follows: 

𝑀𝑀𝑀𝑀 = 𝑥𝑥��,� +  �
∑�
�  �������� ∗ ∆��

���
                                                                            (3) 

where 𝑥𝑥��,� - lower class boundary of the interval containing the median, 
          𝑐𝑐𝑐𝑐���� – cumulative frequency of the interval before the median interval, 
          𝑐𝑐�� - frequency of the median interval, 
           ∆��- the median interval width. 
Medial interval is interval for which accumulated frequencies first time is equal or larger than half of the 
sample size.  
Coefficient of variation (CV) is calculated as follows: 

𝐶𝐶𝐶𝐶 =  ��̅  *100%                                                                           (4) 
Point estimates were aggregated and are provided in Table 5. 

 Table 5  
Point estimates for idea quantity 

   
                                    Source: created by author’s 

As shown in Table 5, the medians for all IMS types are less than the means of the generated ideas. 
These differences indicate some asymmetry in the distribution of respondents - more often a smaller number 
of ideas are generated, but less often - a large number of ideas. There is a particularly large difference 
between these indicators for passive IMS as well as for internal IMS - as frequency distributions are skewed 
mean values does not give a good idea of a typical value that can be expected in case of using these types 
of IMS. The calculated coefficients of variation also indicate similar - passive and internal IMS has more 
variation, relative to its arithmetic means than other IMS application types.   
Further described is the interval estimation for the population mean. The confidence interval for the 
population means µ is calculated as follows: 

 �̅�𝑥 ± 𝑀𝑀𝑀𝑀                                                                            (5) 
where 𝑀𝑀𝑀𝑀 - margin error, 

 𝑀𝑀𝑀𝑀 =  𝑡𝑡���,�/� ∗ �
√�                                                                (6) 

  𝑡𝑡���,�/�- value of t distribution for the selected confidence level and sample size, 
           𝛼𝛼  - level of significance and 100*(1- 𝛼𝛼)%  - confidence interval.                     
The upper confidence limit (UCL) is calculated as follows: 

UCL = �̅�𝑥 + 𝑀𝑀𝑀𝑀                                                                        (7) 
The lower confidence limit (LCL) is calculated as follows: 

LCL = �̅�𝑥 − 𝑀𝑀𝑀𝑀                                                                         (8) 
Confidence intervals (CI) provide the lower confidence limit (LCL) and the upper confidence limit 

(UCL) that are likely to contain the true parameter value (of the population). The value 95% refers to the 
probability that the interval will capture the parameter being estimated (Tan & Tan, 2010).  95% confidence 
interval estimates are aggregated in Table 6. 

Table 6 
Mean values, margin errors and 95% confidence interval estimates for idea quantity 

   

IMS type n  Mean Median s CV
Active IMS 439 4138,6 3392,1 3500,6 85%
Pasive IMS 306 1141,1 96,7 2313,7 203%
Internal IMS 411 1284,3 396,1 2299,2 179%
External IMS 371 4377,1 3875,5 3543,5 81%
Mixed IMS 337 4420,1 3842,6 3771,4 85%

IMS type  Mean ME LCL UCL
Active IMS 4138,6 167,1 3810,2 4466,9
Pasive IMS 1141,1 132,3 880,9 1401,4
Internal IMS 1284,3 113,4 1061,4 1507,3
External IMS 4377,1 184,0 4015,4 4738,9
Mixed IMS 4420,1 205,4 4016,0 4824,2

(5)

where: ME
 
- margin error, 



European Integrat ion Studies 2020/14
200

The median (𝑀𝑀𝑀𝑀) of grouped data is calculated as follows: 

𝑀𝑀𝑀𝑀 = 𝑥𝑥��,� +  �
∑�
�  �������� ∗ ∆��

���
                                                                            (3) 

where 𝑥𝑥��,� - lower class boundary of the interval containing the median, 
          𝑐𝑐𝑐𝑐���� – cumulative frequency of the interval before the median interval, 
          𝑐𝑐�� - frequency of the median interval, 
           ∆��- the median interval width. 
Medial interval is interval for which accumulated frequencies first time is equal or larger than half of the 
sample size.  
Coefficient of variation (CV) is calculated as follows: 

𝐶𝐶𝐶𝐶 =  ��̅  *100%                                                                           (4) 
Point estimates were aggregated and are provided in Table 5. 

 Table 5  
Point estimates for idea quantity 

   
                                    Source: created by author’s 

As shown in Table 5, the medians for all IMS types are less than the means of the generated ideas. 
These differences indicate some asymmetry in the distribution of respondents - more often a smaller number 
of ideas are generated, but less often - a large number of ideas. There is a particularly large difference 
between these indicators for passive IMS as well as for internal IMS - as frequency distributions are skewed 
mean values does not give a good idea of a typical value that can be expected in case of using these types 
of IMS. The calculated coefficients of variation also indicate similar - passive and internal IMS has more 
variation, relative to its arithmetic means than other IMS application types.   
Further described is the interval estimation for the population mean. The confidence interval for the 
population means µ is calculated as follows: 

 �̅�𝑥 ± 𝑀𝑀𝑀𝑀                                                                            (5) 
where 𝑀𝑀𝑀𝑀 - margin error, 

 𝑀𝑀𝑀𝑀 =  𝑡𝑡���,�/� ∗ �
√�                                                                (6) 

  𝑡𝑡���,�/�- value of t distribution for the selected confidence level and sample size, 
           𝛼𝛼  - level of significance and 100*(1- 𝛼𝛼)%  - confidence interval.                     
The upper confidence limit (UCL) is calculated as follows: 

UCL = �̅�𝑥 + 𝑀𝑀𝑀𝑀                                                                        (7) 
The lower confidence limit (LCL) is calculated as follows: 

LCL = �̅�𝑥 − 𝑀𝑀𝑀𝑀                                                                         (8) 
Confidence intervals (CI) provide the lower confidence limit (LCL) and the upper confidence limit 

(UCL) that are likely to contain the true parameter value (of the population). The value 95% refers to the 
probability that the interval will capture the parameter being estimated (Tan & Tan, 2010).  95% confidence 
interval estimates are aggregated in Table 6. 

Table 6 
Mean values, margin errors and 95% confidence interval estimates for idea quantity 

   

IMS type n  Mean Median s CV
Active IMS 439 4138,6 3392,1 3500,6 85%
Pasive IMS 306 1141,1 96,7 2313,7 203%
Internal IMS 411 1284,3 396,1 2299,2 179%
External IMS 371 4377,1 3875,5 3543,5 81%
Mixed IMS 337 4420,1 3842,6 3771,4 85%

IMS type  Mean ME LCL UCL
Active IMS 4138,6 167,1 3810,2 4466,9
Pasive IMS 1141,1 132,3 880,9 1401,4
Internal IMS 1284,3 113,4 1061,4 1507,3
External IMS 4377,1 184,0 4015,4 4738,9
Mixed IMS 4420,1 205,4 4016,0 4824,2

(6)

where: tn – 1,α/2 - value of t distribution for the selected confidence level and sample size, α - level of significance 

and 100*(1– α)%  - confidence interval. 

The upper confidence limit (UCL) is calculated as follows:

The median (𝑀𝑀𝑀𝑀) of grouped data is calculated as follows: 

𝑀𝑀𝑀𝑀 = 𝑥𝑥��,� +  �
∑�
�  �������� ∗ ∆��

���
                                                                            (3) 

where 𝑥𝑥��,� - lower class boundary of the interval containing the median, 
          𝑐𝑐𝑐𝑐���� – cumulative frequency of the interval before the median interval, 
          𝑐𝑐�� - frequency of the median interval, 
           ∆��- the median interval width. 
Medial interval is interval for which accumulated frequencies first time is equal or larger than half of the 
sample size.  
Coefficient of variation (CV) is calculated as follows: 

𝐶𝐶𝐶𝐶 =  ��̅  *100%                                                                           (4) 
Point estimates were aggregated and are provided in Table 5. 

 Table 5  
Point estimates for idea quantity 

   
                                    Source: created by author’s 

As shown in Table 5, the medians for all IMS types are less than the means of the generated ideas. 
These differences indicate some asymmetry in the distribution of respondents - more often a smaller number 
of ideas are generated, but less often - a large number of ideas. There is a particularly large difference 
between these indicators for passive IMS as well as for internal IMS - as frequency distributions are skewed 
mean values does not give a good idea of a typical value that can be expected in case of using these types 
of IMS. The calculated coefficients of variation also indicate similar - passive and internal IMS has more 
variation, relative to its arithmetic means than other IMS application types.   
Further described is the interval estimation for the population mean. The confidence interval for the 
population means µ is calculated as follows: 

 �̅�𝑥 ± 𝑀𝑀𝑀𝑀                                                                            (5) 
where 𝑀𝑀𝑀𝑀 - margin error, 

 𝑀𝑀𝑀𝑀 =  𝑡𝑡���,�/� ∗ �
√�                                                                (6) 

  𝑡𝑡���,�/�- value of t distribution for the selected confidence level and sample size, 
           𝛼𝛼  - level of significance and 100*(1- 𝛼𝛼)%  - confidence interval.                     
The upper confidence limit (UCL) is calculated as follows: 

UCL = �̅�𝑥 + 𝑀𝑀𝑀𝑀                                                                        (7) 
The lower confidence limit (LCL) is calculated as follows: 

LCL = �̅�𝑥 − 𝑀𝑀𝑀𝑀                                                                         (8) 
Confidence intervals (CI) provide the lower confidence limit (LCL) and the upper confidence limit 

(UCL) that are likely to contain the true parameter value (of the population). The value 95% refers to the 
probability that the interval will capture the parameter being estimated (Tan & Tan, 2010).  95% confidence 
interval estimates are aggregated in Table 6. 

Table 6 
Mean values, margin errors and 95% confidence interval estimates for idea quantity 

   

IMS type n  Mean Median s CV
Active IMS 439 4138,6 3392,1 3500,6 85%
Pasive IMS 306 1141,1 96,7 2313,7 203%
Internal IMS 411 1284,3 396,1 2299,2 179%
External IMS 371 4377,1 3875,5 3543,5 81%
Mixed IMS 337 4420,1 3842,6 3771,4 85%

IMS type  Mean ME LCL UCL
Active IMS 4138,6 167,1 3810,2 4466,9
Pasive IMS 1141,1 132,3 880,9 1401,4
Internal IMS 1284,3 113,4 1061,4 1507,3
External IMS 4377,1 184,0 4015,4 4738,9
Mixed IMS 4420,1 205,4 4016,0 4824,2

(7)

The lower confidence limit (LCL) is calculated as follows:

The median (𝑀𝑀𝑀𝑀) of grouped data is calculated as follows: 

𝑀𝑀𝑀𝑀 = 𝑥𝑥��,� +  �
∑�
�  �������� ∗ ∆��

���
                                                                            (3) 

where 𝑥𝑥��,� - lower class boundary of the interval containing the median, 
          𝑐𝑐𝑐𝑐���� – cumulative frequency of the interval before the median interval, 
          𝑐𝑐�� - frequency of the median interval, 
           ∆��- the median interval width. 
Medial interval is interval for which accumulated frequencies first time is equal or larger than half of the 
sample size.  
Coefficient of variation (CV) is calculated as follows: 

𝐶𝐶𝐶𝐶 =  ��̅  *100%                                                                           (4) 
Point estimates were aggregated and are provided in Table 5. 

 Table 5  
Point estimates for idea quantity 

   
                                    Source: created by author’s 

As shown in Table 5, the medians for all IMS types are less than the means of the generated ideas. 
These differences indicate some asymmetry in the distribution of respondents - more often a smaller number 
of ideas are generated, but less often - a large number of ideas. There is a particularly large difference 
between these indicators for passive IMS as well as for internal IMS - as frequency distributions are skewed 
mean values does not give a good idea of a typical value that can be expected in case of using these types 
of IMS. The calculated coefficients of variation also indicate similar - passive and internal IMS has more 
variation, relative to its arithmetic means than other IMS application types.   
Further described is the interval estimation for the population mean. The confidence interval for the 
population means µ is calculated as follows: 

 �̅�𝑥 ± 𝑀𝑀𝑀𝑀                                                                            (5) 
where 𝑀𝑀𝑀𝑀 - margin error, 

 𝑀𝑀𝑀𝑀 =  𝑡𝑡���,�/� ∗ �
√�                                                                (6) 

  𝑡𝑡���,�/�- value of t distribution for the selected confidence level and sample size, 
           𝛼𝛼  - level of significance and 100*(1- 𝛼𝛼)%  - confidence interval.                     
The upper confidence limit (UCL) is calculated as follows: 

UCL = �̅�𝑥 + 𝑀𝑀𝑀𝑀                                                                        (7) 
The lower confidence limit (LCL) is calculated as follows: 

LCL = �̅�𝑥 − 𝑀𝑀𝑀𝑀                                                                         (8) 
Confidence intervals (CI) provide the lower confidence limit (LCL) and the upper confidence limit 

(UCL) that are likely to contain the true parameter value (of the population). The value 95% refers to the 
probability that the interval will capture the parameter being estimated (Tan & Tan, 2010).  95% confidence 
interval estimates are aggregated in Table 6. 

Table 6 
Mean values, margin errors and 95% confidence interval estimates for idea quantity 

   

IMS type n  Mean Median s CV
Active IMS 439 4138,6 3392,1 3500,6 85%
Pasive IMS 306 1141,1 96,7 2313,7 203%
Internal IMS 411 1284,3 396,1 2299,2 179%
External IMS 371 4377,1 3875,5 3543,5 81%
Mixed IMS 337 4420,1 3842,6 3771,4 85%

IMS type  Mean ME LCL UCL
Active IMS 4138,6 167,1 3810,2 4466,9
Pasive IMS 1141,1 132,3 880,9 1401,4
Internal IMS 1284,3 113,4 1061,4 1507,3
External IMS 4377,1 184,0 4015,4 4738,9
Mixed IMS 4420,1 205,4 4016,0 4824,2

(8)

Confidence intervals (CI) provide the lower confidence limit (LCL) and the upper confidence limit 
(UCL) that are likely to contain the true parameter value (of the population). The value 95% refers 
to the probability that the interval will capture the parameter being estimated (Tan & Tan, 2010).  
95% confidence interval estimates are aggregated in Table 6.

Table 6
Mean values, margin 
errors and 95% 
confidence interval 
estimates for idea 
quantity

IMS type Mean Me LCL UCL

Active IMS 4138,6 167,1 3810,2 4466,9

Pasive IMS 1141,1 132,3 880,9 1401,4

Internal IMS 1284,3 113,4 1061,4 1507,3

External IMS 4377,1 184,0 4015,4 4738,9

Mixed IMS 4420,1 205,4 4016,0 4824,2

Source: created by author’s

A 95% CI means that if the study will be conducted multiple times with corresponding 95% CI for 
the mean constructed, author’s expect 95% of these CI’s to contain the true population mean (Tan 
& Tan, 2010) and it could be between 3810 to 4467 ideas generated in active IMS, for passive IMS 
between 881 to 1401, for internal IMS between 1061 to 1507, external IMS between 4015 to 4739 
and mixed IMS between 4016 to 4824.

Hypothesis testing – idea quantity
Basic data set analysis showed that it is possible to test the hypothesis on the gathered data. 
That is the reason why further in this paper the authors conduct significance tests for population 
mean number of ideas created (idea quantity). A respondent’s frequency distribution shows the 
main trends that will be tested: (1) active IMS provides higher idea quantity than passive IMS; (2) 
external IMS provides higher idea quantity than internal IMS; (3) mixed IMS provides higher idea 
quantity than internal and external IMS. See in Figure 8.
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Figure 8.  Respondents frequency distribution for idea quantity based on sample data 
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(H4) Mixed IMS provide higher idea quantity than external 
H0: �̅�𝑥�� −  �̅�𝑥�� ≤ 0 and HA: �̅�𝑥�� −  �̅�𝑥��> 0 
As sample sizes un standard deviations differs, the test statistics are calculated as follows, (Moore et al. 
2016): 
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As sample sizes un standard deviations differs, the test statistics are calculated as follows, 
(Moore et al. 2016):

 𝑡𝑡 =  �̅� � �̅�
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where �̅�𝑥�  and  �̅�𝑥�  means of comparable sample variables,  
           𝑠𝑠�� and 𝑠𝑠�� variance (standard deviation squared) of comparable samples variables, 
           𝑛𝑛� and 𝑛𝑛� sample sizes of comparable samples 
and compared with t-statistics critical values 𝑡𝑡�,�,  
where degrees of freedom (𝑑𝑑𝑑𝑑) for the t-test statistics are calculated as follows:   
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Also, p-values were calculated for given test statistics and the degrees of freedom. The p-value is 
the probability of obtaining a value of the test statistic as extreme as or more extreme than the actual value 
obtained when the null hypothesis is true. Thus, the p-value is the smallest significance level at which a 
null hypothesis can be rejected, given the observed sample statistic. Calculated t-statistics, degrees of 
freedom (df), critical values (tc) and p-values are aggregated in following Table 7. 

 Table 7 
Hypothesis test statistics for idea quantity 
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From test results, authors would reject the null hypothesis 1, 2, 3 and conclude that sample data 
provide strong evidence to support conclusions that: 

(H1) Active IMS provide higher idea quantity than passive; 
(H2) External IMS provide higher idea quantity than internal; 
(H3) Mixed IMS provide higher idea quantity than internal. 

These conclusions are supported by very low p-values (<0,0001). 
Regarding H4 authors cannot reject the null hypothesis because t < tc and p-value >0,05 – so sample 

data does not give sufficient evidence that mixed IMS provide higher idea quantity than external. 
5. Conclusions 
 There is strong statistical evidence to support conclusions that: 

o Active IMS provide higher idea quantity than passive. 
o External IMS provide higher idea quantity than internal. 
o Mixed IMS provide higher idea quantity than internal. 
o Paper does not have sufficient evidence that mixed IMS provide higher idea quantity than 

external. 
 This research fulfils an identified need to clarify IMS types and their impact on the results – idea 

quantity. This research delivers the following academical contribution: ‘ 
o (1) it is the widest web-based IMS empirical research based on the survey;  
o (2) approbated classifications of IMS;  
o (3) it researches different classifications of IMS and their impact on idea quantity. 

 The practical contribution of the research results helps to understand what kind of results enterprises 
could expect from different IMS application types.  

 Research results highlight the benefits/implications of adopting different types of IMS for 
organizations. These contributions also provide managers with a richer set of theoretical tools, 

Pairs tested t df tc p -value
AIMS vs PIMS 14,07 741,05 1,96 <0,0001
IIMS vs EIMS 14,31 623,41 1,96 <0,0001
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Also, p-values were calculated for given test statistics and the degrees of freedom. The p-value is 
the probability of obtaining a value of the test statistic as extreme as or more extreme than the actual value 
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Also, p-values were calculated for given test statistics and the degrees of freedom. The p-value is 
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These conclusions are supported by very low p-values (<0,0001). 
Regarding H4 authors cannot reject the null hypothesis because t < tc and p-value >0,05 – so sample 

data does not give sufficient evidence that mixed IMS provide higher idea quantity than external. 
5. Conclusions 
 There is strong statistical evidence to support conclusions that: 

o Active IMS provide higher idea quantity than passive. 
o External IMS provide higher idea quantity than internal. 
o Mixed IMS provide higher idea quantity than internal. 
o Paper does not have sufficient evidence that mixed IMS provide higher idea quantity than 

external. 
 This research fulfils an identified need to clarify IMS types and their impact on the results – idea 

quantity. This research delivers the following academical contribution: ‘ 
o (1) it is the widest web-based IMS empirical research based on the survey;  
o (2) approbated classifications of IMS;  
o (3) it researches different classifications of IMS and their impact on idea quantity. 

 The practical contribution of the research results helps to understand what kind of results enterprises 
could expect from different IMS application types.  

 Research results highlight the benefits/implications of adopting different types of IMS for 
organizations. These contributions also provide managers with a richer set of theoretical tools, 

Pairs tested t df tc p -value
AIMS vs PIMS 14,07 741,05 1,96 <0,0001
IIMS vs EIMS 14,31 623,41 1,96 <0,0001
IIMS vs MIMS 13,36 531,54 1,96 <0,0001
EIMS vs MIMS 0,16 688,74 1,96 >0,05

(10)

lso, p-values were calculated for given test statistics and the degrees of freedom. The p-value 
is the probability of obtaining a value of the test statistic as extreme as or more extreme than 
the actual value obtained when the null hypothesis is true. Thus, the p-value is the smallest 
significance level at which a null hypothesis can be rejected, given the observed sample statistic. 
Calculated t-statistics, degrees of freedom (df), critical values (tc) and p-values are aggregated in 
following Table 7.
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Table 7
Hypothesis test statistics 
for idea quantity

Pairs tested t df tc p- value

AIMS vs PIMS 14,07 741,05 1,96 <0,0001

IIMS vs EIMS 14,31 623,41 1,96 <0,0001

IIMS vs MIMS 13,36 531,54 1,96 <0,0001

EIMS vs MIMS 0,16 688,74 1,96 >0,05

Source: created by author’s

From test results, authors would reject the null hypothesis 1, 2, 3 and conclude that sample data 
provide strong evidence to support conclusions that:

 _ (H1) Active IMS provide higher idea quantity than passive;
 _ (H2) External IMS provide higher idea quantity than internal;
 _ (H3) Mixed IMS provide higher idea quantity than internal.

These conclusions are supported by very low p-values (<0,0001).

Regarding H4 authors cannot reject the null hypothesis because t < tc and p-value >0,05 – so sam-
ple data does not give sufficient evidence that mixed IMS provide higher idea quantity than external.

Conclusions
There is strong statistical evidence to support conclusions that:

 _ Active IMS provide higher idea quantity than passive.
 _ External IMS provide higher idea quantity than internal.
 _ Mixed IMS provide higher idea quantity than internal.
 _ Paper does not have sufficient evidence that mixed IMS provide higher idea quantity than external.

This research fulfils an identified need to clarify IMS types and their impact on the results – idea 
quantity. This research delivers the following academical contribution: ‘
1 it is the widest web-based IMS empirical research based on the survey; 
2 approbated classifications of IMS; 
3 it researches different classifications of IMS and their impact on idea quantity.

 _ The practical contribution of the research results helps to understand what kind of results en-
terprises could expect from different IMS application types. 

 _ Research results highlight the benefits/implications of adopting different types of IMS for organ-
izations. These contributions also provide managers with a richer set of theoretical tools, ena-
bling them to make better decisions regarding the selection of IMS that are the best for achieving 
the results in the given context. Web-based IMS types and their impact on the IMS results could 
help to evaluate the potential application of these systems in different application scenarios.

 _ This research concentrated only on commercially available web-based IMS, but further re-
search could include insights from non-commercially/private IMS, as well as real-life IMS. 
Additional research should be done to compare real-life and web-based IMS. Also, detailed 
research is needed to explore why standard deviations and coefficient of variations are so high. 

 _ Further research should provide evidence on what benefits the different classes of IMS provide 
to organizations and also on other IMS results, such as, idea quality and involvement. This also 
coincides with van den Ende et. al. (2015) call to research different IMS types and their results. 
The research delivered by authors is the first attempt to answer this question, but there are 
a lot of additional questions to be answered. The authors are convinced that this paper will 
attract the interest of more researchers regarding IMS types and their impact on its results.
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